Effects of short term iron citrate treatments at different pH values on roots of iron-deficient cucumber: a Mössbauer analysis.

نویسندگان

  • Ferenc Fodor
  • Krisztina Kovács
  • Viktória Czech
  • Ádám Solti
  • Brigitta Tóth
  • László Lévai
  • Károly Bóka
  • Attila Vértes
چکیده

Alkaline pH values and bicarbonate greatly reduce the mobility and uptake of Fe, causing Fe deficiency chlorosis. In the present work, the effects of pH and bicarbonate on the uptake and accumulation of Fe in the roots of cucumber were studied by Mössbauer spectroscopy combined with physiological tests and diaminobenzidine enhanced Perls staining. Mössbauer spectra of Fe-deficient cucumber roots supplied with 500 μM (57)Fe(III)-citrate at different pH values showed the presence of an Fe(II) and an Fe(III) component. As the pH was increased from 4.5 to 7.5, the root ferric chelate reductase (FCR) activity decreased significantly and a structural change in the Fe(III) component was observed. While at pH 4.5 the radial intrusion of Fe reached the endodermis, at pH 7.5, Fe was found only in the outer cortical cell layers. The Mössbauer spectra of Fe-deficient plants supplied with Fe(III)-citrate in the presence of bicarbonate (pH 7.0 and 7.5) showed similar Fe components, but the relative Fe(II) concentration compared to that measured at pH values 6.5 and 7.5 was greater. The Mössbauer parameters calculated for the Fe(II) component in the presence of bicarbonate were slightly different from those of Fe(II) alone at pH 6.5-7.5, whereas the FCR activity was similarly low. Fe incorporation into the root apoplast involved only the outer cortical cell layers, as in the roots treated at pH 7.5. In Fe-sufficient plants grown with Fe(III)-citrate and 1mM bicarbonate, Fe precipitated as granules and was in diffusely scattered grains on the root surface. The "bicarbonate effect" may involve a pH component, decreasing both the FCR activity and the acidification of the apoplast and a mineralization effect leading to the slow accumulation of extraplasmatic Fe particles, forming an Fe plaque and trapping Fe and other minerals in biologically unavailable forms.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mössbauer study of iron uptake in cucumber root

Fe Mössbauer spectroscopy was used to study the uptake and distribution of iron in the root of cucumber plants grown in iron-deficient modified Hoagland nutrient solution and put into iron-containing solution with 10 μM Fe citrate enriched with Fe (90%) only before harvesting. The Mössbauer spectra of the frozen roots exhibited two Fe components with typical average Mössbauer parameters of δ=0....

متن کامل

Fe deficiency differentially affects the vacuolar proton pumps in cucumber and soybean roots

Iron uptake in dicots depends on their ability to induce a set of responses in root cells including rhizosphere acidification through H(+) extrusion and apoplastic Fe(III) reduction by Fe(III)-chelate reductase. These responses must be sustained by metabolic rearrangements aimed at providing the required NAD(P)H, ATP and H(+). Previous results in Fe-deficient cucumber roots showed that high H(+...

متن کامل

The effect of different sources of iron on improving the growth and condition of plantain leaf chlorosis (Platanus orientalis L) by trunk injection in urban landscape

To investigate trunk injection treatment effects on eliminating chlorosis disorder and improving the growth of plane trees (Platanus orientalis L.), an experiment was arranged in a factorial experiment based on a randomized complete block design at Lavark Reasrch Farm, Isfahan University of Technology, Isfahan, Iran, with three replications and four treatments. Treatments consisted of different...

متن کامل

Fe-Chelate Reductase Activity of Plasma Membranes Isolated from Tomato (Lycopersicon esculentum Mill.) Roots : Comparison of Enzymes from Fe-Deficient and Fe-Sufficient Roots.

Reduction of Fe(3+) to Fe(2+) is a prerequisite for Fe uptake by tomato roots. Ferric chelate reductase activity in plasma membranes (PM) isolated from roots of both iron-sufficient (+Fe) and iron-deficient (-Fe) tomatoes (Lycopersicon esculentum Mill.) was measured as NADH-dependent ferric citrate reductase and exhibited simple Michaelis-Menten kinetics for the substrates, NADH and Fe(3+)(citr...

متن کامل

Iron availability thresholds for the inoculation of cucumber with Trichoderma asperellum T34

Inoculation with biocontrol agents can affect iron (Fe) uptake by plants. The objective of this research was to study the necessity of defining a Fe threshold in growth media for the inoculation with the biocontrol agent Trichoderma asperellum T34. A completely randomized experiment with cucumber (Cucumis sativus L.) was performed involving two factors: Fe rate in the growth medium in the form ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of plant physiology

دوره 169 16  شماره 

صفحات  -

تاریخ انتشار 2012